King Fahd University of Petroleum and Minerals Dammam Community College

Code **B**

Term 171

Prep Mathematics - Math 011

Class Test 2

November 20th, 2017

	Movellibel 20 , 2017	
Time allowed : <u>60 Minutes</u>	Mar	King Scheme
Name:	ID#	Section:

Read the following instructions:-

This test consists of eight questions.

You must <u>show all necessary steps</u> of your solution to earn the full mark.

Calculators are not allowed.

This test is worth's <u>8%</u> of the total marks allocated to this course.

Question	Marks
1	/4
2	/4
3	/4
4	/4
5	/4
6	/4
7	/4
8	/4
<u>Total marks</u>	/32

Question 1. Find the solution set of the inequality $(x^2 + 10x + 25)(x+1) \ge 0$, in interval notation.

$$(x+1)(x+10x+25) \ge 0$$

$$(x+1)(x+5)^{2} \ge 0$$

$$(x+1)($$

SOLUTION: [-1, 00) U[-5]

NOTE: Other method is a possibility.

Question 2. Find the sum of the values of a for which the equation: $ax^2 + 2(a+4)x + 25 = 0$ has only one solution.

$$A = a, b = 2(a+4) = 2a+8, c=25$$

$$D = b^{2} - 4ac = 0$$

$$(2)^{2}(a+4)^{2} - 4a(25) = 0$$

$$(a+4)^{2} - 25a = 0$$

$$a^{2} + 8a + 16 - 25a = 0$$

$$(a-1)(a-16) = 0$$

$$(a-1)(a-16) = 0$$

$$A_{1} = 1, A_{2} = 1+16 = 17$$

$$0.5$$
Sum: $A_{1} + A_{2} = 1+16 = 17$

Question 3. If the line by - 5x = 1 is perpendicular to the line passing through the points (4,-1) and $\left(-\frac{7}{2},2\right)$, then find b.

$$m_1 = \frac{2 - (-1)}{-\frac{7}{2} - 4} = \frac{3}{-\frac{15}{2}} = \frac{-2}{5}$$

$$m_2 = \frac{1}{m_1} \implies m_2 = \frac{5}{2}$$
 (0.5)

$$\frac{5}{6} = \frac{5}{2}$$
 0.5

Question 4. Find the solution set of the inequality $\left| \frac{5+2x}{x} \right| < 1$, in interval notation.

NOTE: Solution Can be reached in a different way.

Question 5. Find the equation of a circle in standard form with endpoints of a diameter at (1,5) and (7,8).

$$C = \left(\frac{1+7}{2}, \frac{5+8}{2}\right) = \left(\frac{4}{5}, \frac{13}{2}\right) - \left(\frac{1}{5}\right)^{2}$$

$$= \sqrt{\left(\frac{4-1}{2}\right)^{2} + \left(\frac{5-\frac{13}{2}}{2}\right)^{2}}, rro - \left(\frac{1}{5}\right)^{2}$$

$$= \sqrt{\frac{9+\left(-\frac{3}{2}\right)^{2}}{9+\frac{9}{4}}} = \sqrt{\frac{45}{4}} = \sqrt{\frac{45}{4}} = \sqrt{\frac{1}{45}} - \left(\frac{1}{5}\right)^{2}$$

$$\left(\frac{x-4}{5}\right)^{2} + \left(\frac{y-\frac{13}{2}}{2}\right)^{2} = \frac{45}{4} \text{ or } \left(\frac{\sqrt{45}}{2}\right)^{2} - \left(\frac{1}{5}\right)^{2}$$

$$NoTE: Other ways of solutions are possible.$$

Question 6. Solve:
$$4x^3 = -256$$
.

$$\frac{4x^3 = -256}{4} \quad \chi^3 = -64 \quad -65$$

$$x^{3}+64=0$$
 $(x)^{3}+(4)^{3}=0$
 $(x+4)(x^{2}-4x+16)=0$

$$x+4=0$$
 $a=1, b=-4, c=16$

$$= 2 \pm 2\sqrt{3}i$$

$$(2-4)$$
, $(x=2+2\sqrt{3}i)$, $(2-2\sqrt{3}i)$

Question 7. Find the number of different real solutions by solving:

$$2n^6 - 7n^4 + 5n^2 = 0$$

$$n^{2}(2n^{4}-7n^{2}+5)=0$$
 — 0
 $n^{2}(2n^{2}-5)(n^{2}-1)=0$ — 0

$$N^2 = 0$$
, $2n^2 - 5 = 0$, $N^2 - 1 = 0$

$$n = 0$$
 0.5 , $2n^2 = 5$, $n^2 = 1$
 $n^2 = \frac{5}{2}$
 $n = \pm \sqrt{\frac{5}{2}} = \pm \frac{\sqrt{5}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}$
 $n = \pm \frac{\sqrt{10}}{2}$
 $n = \pm \frac{\sqrt{10}}{2}$
 $n = \pm \frac{\sqrt{10}}{2}$

Question 8. If the equation: $x^2 = -25 + 6x$ is written in the complete square form $(x-n)^2 = m$, then find $\frac{1}{3}n + \frac{1}{2}m$.

$$\chi^{2}-6\chi = -25$$

$$\chi^{2}-6\chi + \left(\frac{-6}{2}\right)^{2} = -25 + \left(\frac{-6}{2}\right)^{2}$$

$$\chi^{2}-6\chi + 9 = -25 + 9 \qquad \boxed{)}$$

$$(\chi-3)^{2} = -16 \qquad \boxed{)}$$

		4