Dammam Community College
 MATH 012

Past Exam Questions Section 9.2

1. If (a, b, c) is the solution of the system of equations $\left\{\begin{array}{c}x-3 y+z=8 \\ 2 x-5 y-3 z=2 \\ x+4 y+z=1\end{array}\right.$ then $a+b+c=$
a. 4
b. -6
c. 6
d. -1
e. -4
2. If (a, b, c) is the solution of the system of equations $\left\{\begin{array}{c}x+3 y-z=1 \\ 2 x+5 y-3 z=1 \\ x+4 y+z=0\end{array}\right.$ then $a+b+c=$
a. -9
b. -2
c. -7
d. 0
e. 12
3. The system of linear equation $\left\{\begin{array}{r}x+2 y=1 \\ x+3 y+z=4 \\ 2 y+2 z=6\end{array}\right.$ has
a. Infinitely many solutions.
b. Three solutions only.
c. No solution.
d. A unique solution.
e. Two solutions only.
4. Consider the augmented matrix of the linear system $\left[\begin{array}{ccc|c}1 & -2 & -2 & -1 \\ 1 & 1 & 1 & 2 \\ 1 & 2 & 2 & 1\end{array}\right]$

Which one of the following statement is TRUE?
a. The system is inconsistent, independent, and has no solution.
b. The system is consistent, independent and has one solution.
c. The system is consistent, dependent, and has infinitely many solutions.
d. The system has the solution set $\left\{\left(2,1, \frac{1}{2}\right)\right\}$
e. The system has the solution set $\{(5,-1,-1)\}$

Dammam Community College MATH 012

5. If the system $\left\{\begin{array}{c}x-2 y+z=1 \\ y+3 z=m^{2} \\ y+k z=4\end{array}\right.$ has a unique solution, then
a. $k \neq 3$
b. $k \neq 3$ and $m \neq \pm 2$
c. $k=3$ and $m \neq \pm 2$
d. $k=1$
e. $k \neq 3$ and $m= \pm 2$
6. Which one of the following statement is TRUE about the linear system of equations which has the augmented matrix $\left[\begin{array}{ccc|c}1 & 2 & -1 & 1 \\ 2 & 4 & -2 & 0 \\ 1 & 2 & \left(c^{2}-1\right) & c+1\end{array}\right]$
a. The system is inconsistent for all values of c.
b. The system is consistent if $c=0$, with infinitely many solutions.
c. The system is consistent for all $c \neq 0$, with exactly one solution.
d. The system can be made consistent for a suitable choice of c.
e. The system is consistent for $c>0$.
7. The value of the constant k for which the system of equations $\left\{\begin{array}{r}x+k z=1 \\ y+z=2 \\ 2 x+y=5\end{array}\right.$ has no solution, is equal to:
a. $k=-1 / 2$
b. $k=-3 / 2$
c. $k=-5 / 2$
d. $k=3 / 2$
e. $k=-1$
